EconPapers    
Economics at your fingertips  
 

A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles

Rubén Pérez-Jeldres, Pablo Cornejo, Mauricio Flores, Alfredo Gordon and Ximena García

Energy, 2017, vol. 120, issue C, 663-674

Abstract: Pulverized coal power plants in Chile are evaluating to reduce CO2 emissions by co-firing coal with biomass, which is CO2-neutral. A computational fluid dynamics model was used in this study to predict the performance of a 150 MW commercial boiler co-firing pulverized coal with pine sawdust. Synergistic effects were identified by burnout, thermal and hydrodynamic profiles. Co-firing was simulated with 5% of biomass substitution, and feeding in the first level of burners. The model was validated using data from the power plant. The results show an expected decrease in SO2 emissions and a negligible reduction in heat transferred to the water tubes (0.6%). Biomass presence increased the burning rate of fuel particles, as shown by higher CO2 emissions and a lower CO concentration, per unit of thermal power. The model reveals synergistic effects, proved by an increase in temperature, due to an early combustion of biomass particles, increase in the coal combustion rate, and a better temperature distribution in the boiler. These synergistic effects were compared with results obtained at bench scale reported in the literature. Thus, it was concluded that a relatively small replacement of coal by biomass could significantly improve the fuel combustion process and the boiler performance.

Keywords: Co-firing; Sawdust; Synergistic; Pulverized coal; Tangentially boiler; Biomass (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216317716
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:120:y:2017:i:c:p:663-674

DOI: 10.1016/j.energy.2016.11.116

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:663-674