Energy modelling towards low carbon development of Beijing in 2030
Guangling Zhao,
Josep M. Guerrero,
Kejun Jiang and
Sha Chen
Energy, 2017, vol. 121, issue C, 107-113
Abstract:
Beijing, as the capital of China, is under the high pressure of climate change and pollution. The consumption of non-renewable energy is one of the most important sources of the CO2 emissions, which cause climate changes. This paper presents a study on the energy system modelling towards renewable energy and low carbon development for the city of Beijing. The analysis of energy system modelling is organized in two steps to explore the alternative renewable energy system in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The EnergyPLAN, an energy system analysis tool, is chosen to develop the reference energy model. Secondly, this reference model is used to investigate the alternative energy system for integrating renewable energies. Three scenarios are developed towards the energy system of Beijing in 2030, which are: (i) reference scenario 2030, (ii) BAU (business as usual) scenario 2030, and (iii) RES (renewable energies) scenario 2030. The 100% renewable energy system with zero CO2 emissions can be achieved by increasing solar energy, biomass and municipal solid waste (MSW) and optimizing heating system. The primary fuel consumption is reduced to 155.9 TWh in the RES scenario, which is 72% of fuel consumption in the reference scenario 2030.
Keywords: Renewable energy; Energy modelling; Low carbon; Beijing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300191
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:121:y:2017:i:c:p:107-113
DOI: 10.1016/j.energy.2017.01.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().