EconPapers    
Economics at your fingertips  
 

Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream

David Wafula Wekesa, Cong Wang, Yingjie Wei and Louis Angelo M. Danao

Energy, 2017, vol. 121, issue C, 854-864

Abstract: Unsteady wind is characterized by low energy content and large fluctuations. A Computational Fluid Dynamics (CFD)-based method for capturing wind energy in a fluctuating free-stream, supported by analytical formulations, is investigated in this paper. We implemented unsteady Reynolds-Averaged Navier-Stokes (RANS) solver to control the dynamic mesh motion. Using an urban wind resource, characteristic fluctuation frequencies at 0.5 Hz, 1.0 Hz, and 2.0 Hz have been selected to demonstrate the enhanced wind energy capture. The numerical energy coefficient marginally changed from 0.36 at 0.5 Hz to 0.37 at both 1 Hz and 2 Hz cases. The results reveal that the highest frequency of fluctuation with meaningful energy content in unsteady wind condition is ≈1 Hz. The study findings promote our understanding about the energy associated with short-period fluctuations reflecting realistic unsteady wind environment. Additionally, the present study approach to analyze wind energy capture on a H-Darrieus wind rotor in a fluctuating free-stream can be extrapolated to other slightly complex VAWT configurations.

Keywords: Unsteady wind; CFD; Unsteady RANS; Energy coefficient (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300415
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:121:y:2017:i:c:p:854-864

DOI: 10.1016/j.energy.2017.01.041

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:854-864