EconPapers    
Economics at your fingertips  
 

Data-driven based reliability evaluation for measurements of sensors in a vapor compression system

Zhimin Du, Ling Chen and Xinqiao Jin

Energy, 2017, vol. 122, issue C, 237-248

Abstract: Sensors play essential roles in the refrigeration and air conditioning systems. The faults of sensors may result in the decrease of system performance and waste of energy. It is not easy to discover the sensor bias, since its occurrence is always random and unpredictable. The data-driven based evaluation logic is proposed to assess the measurement reliability of sensors in the refrigeration and air conditioning systems. The subtractive clustering is presented to classify and recognize the various operation conditions adaptively. The principal component analysis models constructed upon the known conditions are developed to detect the measuring faults of sensors. Two statistics of T2 and SPE are combined to evaluate the measurement reliability of variables, which are divided into monitoring-type and controlling-type according to their attributes in the control loops. Ten fault cases, which include the fixed and drifting biases of various temperature and pressure sensors, are tested in a real vapor compression system.

Keywords: Fault detection; Cluster analysis; Principal component analysis; Sensor; Vapor compression system (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300555
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:237-248

DOI: 10.1016/j.energy.2017.01.055

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:237-248