EconPapers    
Economics at your fingertips  
 

A novel fuzzy control algorithm for reducing the peak demands using energy storage system

Kein Huat Chua, Yun Seng Lim and Stella Morris

Energy, 2017, vol. 122, issue C, 265-273

Abstract: Commercial and industrial customers are subject to the monthly maximum demand charges which can be as high as 30% of the total electricity bills. Battery-based energy storage system (BESS) can be used to reduce the monthly maximum demand charges. A number of control strategies have been developed for the BESS to reduce the daily peak demands. A fuzzy control algorithm is developed to reduce the daily peak demands with the limited capacity of the BESS. Its performance is evaluated at two different buildings, namely building A and B. The fuzzy controller forecasts the load profile one day in advance using the historical load data. Then during the day of peak reduction, the controller will adjust the power output of BESS using the latest state of charge and operation time. The performance of the fuzzy controller is compared with other two controllers developed in the past. The experimental results show that fuzzy controller is the most effective approach for the peak reduction under the limited capacity of the BESS.

Keywords: Energy storage; Peak demand; Peak reduction; Fuzzy control; Commercial and industrial customers (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300634
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:265-273

DOI: 10.1016/j.energy.2017.01.063

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:265-273