EconPapers    
Economics at your fingertips  
 

Thermodynamic and economy analysis of solid oxide electrolyser system for syngas production

Mahrokh Samavati, Massimo Santarelli, Andrew Martin and Vera Nemanova

Energy, 2017, vol. 122, issue C, 37-49

Abstract: A pressurized solid oxide electrolyser (SOE) system for syngas production is analyzed. The system is modeled and analyzed considering energy and exergy aspects. The main consideration is to quantify the effect of operating pressure on the system performance when syngas is used for synthetic diesel production. At elevated pressures methanation reaction within the electrolyser causes internal production of methane from syngas. The results show that methane fraction increase from almost zero percent to 14% at 25 bar. Since methane is not a favorable outcome of this system, elevated pressure has adverse effect on the total system performance and consequently system efficiency drops by about 20% points by increasing the electrolyser operating pressure from atmospheric to 25 bar. This effect also results in higher levelized cost of syngas at elevated pressures. Effects of other operating parameters like temperature and utilization factor on the syngas production rate and system performance are also explored. In addition, relative irreversibility of each component is estimated. It is concluded that the solid oxide electrolyser has the highest relative irreversibility amongst other system components which can be minimized by changing operating temperature. At last but not least, levelized cost of produced syngas is estimated.

Keywords: Solid oxide electrolyser; Pressurized; Energy analysis; Exergy analysis; Syngas levelized cost; Synthetic fuel production (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300671
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:37-49

DOI: 10.1016/j.energy.2017.01.067

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:37-49