EconPapers    
Economics at your fingertips  
 

Effects of catalyst agglomerate shape in polymer electrolyte fuel cells investigated by a multi-scale modelling framework

M.S. Ismail, D.B. Ingham, L. Ma, K.J. Hughes and M. Pourkashanian

Energy, 2017, vol. 122, issue C, 420-430

Abstract: A multi-scale modelling framework is developed for the PEFC cathode electrode. Unlike the conventional agglomerate model, the effects of the microstructure of the agglomerate are numerically coupled to the fuel cell-scale model in this framework. This is performed through solving the agglomerate-scale model first and subsequently extracting and using the data required to generate the performance curves in the fuel cell-scale model. This enables one to freely investigate the structure of the agglomerate without being limited to the only three agglomerate shapes that can be investigated using the conventional agglomerate model: spheres, long cylinders with sealed ends and long slabs with sealed ends. The numerical studies conducted in this work using the developed framework have revealed that the performance of the cathode electrode is highly sensitive to the specific surface area of the agglomerate if the size of the latter is relatively large, i.e. of the order of 1000 nm. Namely, the maximum reported current density has increased by about 60% when changing from the ‘large’ spherical agglomerate to the ‘large’ cylindrical agglomerate. Also, it has been shown that a slight change in the structure of the agglomerate may significantly improve the fuel cell performance.

Keywords: PEFCs; Agglomerate model; Multi-scale model; Numerical coupling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300920
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:420-430

DOI: 10.1016/j.energy.2017.01.092

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:420-430