90–100% renewable electricity for the South West Interconnected System of Western Australia
Bin Lu,
Andrew Blakers and
Matthew Stocks
Energy, 2017, vol. 122, issue C, 663-674
Abstract:
Rapidly increasing penetration of renewables, primarily wind and photovoltaics (PV), is causing a move away from fossil fuel in the Australian electric power industry. This study focuses on the South West Interconnected System in Western Australia. Several high (90% and 100%) renewables penetration scenarios have been modelled, comprising wind and PV supplemented with a small amount of biogas, and compared with a “like-for-like” fossil-fuel replacement scenario. Short-term off-river (closed cycle) pumped hydro energy storage (PHES) is utilised in some simulations as a large-scale conventional storage technology. The scenarios are examined by using a chronological dispatch model. An important feature of the modelling is that only technologies that have been already deployed on a large scale (>150 gigawatts) are utilised. This includes wind, PV and PHES. The modelling results demonstrate that 90–100% penetration by wind and PV electricity is compatible with a balanced grid. With the integration of off-river PHES, 90% renewables penetration is able to provide low-carbon electricity at competitive prices. Pumped hydro also facilitates a 100% renewables scenario which produces zero greenhouse gas emissions with attractive electricity prices. A sensitivity analysis shows the most important factors in the system cost are discount rate and wind turbine cost.
Keywords: Energy system analysis; Renewable energy systems; Pumped hydro (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300774
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:663-674
DOI: 10.1016/j.energy.2017.01.077
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().