EconPapers    
Economics at your fingertips  
 

Climate effects of electricity production fuelled by coal, forest slash and municipal solid waste with and without carbon capture

Roger Sathre, Leif Gustavsson and Nguyen Le Truong

Energy, 2017, vol. 122, issue C, 711-723

Abstract: We analyse the climate implications of producing electricity in large-scale conversion plants using coal, forest slash and municipal solid waste with and without carbon capture and storage (CCS). We calculate the primary energy, carbon dioxide (CO2) and methane (CH4) emission profiles, and the cumulative radiative forcing (CRF) of different systems that produce the same amount of electricity. We find that using slash or waste for electricity production instead of coal somewhat increases the instantaneous CO2 emission from the power plant, but avoids significant subsequent emissions from decaying slash in forests or waste in landfills. For slash used instead of coal, we find robust near- and long-term reductions in total emissions and CRF. Climate effects of using waste instead of coal are more ambiguous: CRF is reduced when CCS is used, but without CCS there is little or no climate benefits of using waste directly for energy, assuming that landfill gas is recovered and used for electricity production. The application of CCS requires more fuel, but strongly reduces the CO2 emissions. The use of slash or waste together with CCS results in negative net emissions and CRF, i.e. global cooling.

Keywords: Forest residues; Landfill; Carbon capture and storage; Radiative forcing; Fuel substitution (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300762
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:711-723

DOI: 10.1016/j.energy.2017.01.076

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:711-723