CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs
Liang Zhang,
Xin Li,
Yin Zhang,
Guodong Cui,
Chunyang Tan and
Shaoran Ren
Energy, 2017, vol. 123, issue C, 139-148
Abstract:
High-temperature gas reservoirs (HTGR) come with significant geothermal potentials. Supercritical CO2 has been considered as one of the best heat transmission fluids for geothermal production. In this study, a novel concept technology of CO2-HTGR system has been proposed to develop the geothermal energy in the depleted high-temperature gas reservoirs through CO2 injection associated with EGR and geological storage. CO2 enhanced gas recovery (EGR) with pressure build-up should be conducted first to establish a CO2 gas reservoir with a low methane content, then the hot CO2 gas in the reservoir is produced for heat utilization and then injected back. Finally, the CO2 gas reservoir is shut down for permanent geological storage. Reservoir numerical simulation has been conducted to study the fundamental processes of this concept technology including the establishment of a CO2 gas reservoir through EGR and pure injection, and the heat mining performance of CO2 gas cycling in the created reservoir. The simulation results indicate that a high injection-production ratio during CO2 EGR can shorten the time of establishing a CO2 gas reservoir. The purity of the established CO2 gas reservoir has a significant influence on the heat mining performance of cyclic CO2 gas. When the CO2 purity in the gas reservoir is higher than 90%, the damage of the remaining methane to the heat mining rate of supercritical CO2 can be controlled within 9.5%. The integrated process of CO2 injection for geothermal development associated with EGR and geological storage is more attractive than the conventional CO2 geothermal system and has a stronger on-site feasibility.
Keywords: High-temperature gas reservoir; Enhanced gas recovery; Geothermal development; Geological storage; Supercritical CO2; Heat mining performance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217301421
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:123:y:2017:i:c:p:139-148
DOI: 10.1016/j.energy.2017.01.135
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().