Economics at your fingertips  

Application of microgrids in providing ancillary services to the utility grid

Alireza Majzoobi and Amin Khodaei

Energy, 2017, vol. 123, issue C, 555-563

Abstract: A microgrid optimal scheduling model is developed in this paper to demonstrate microgrid's capability in offering ancillary services to the utility grid. The application of localized ancillary services is of significant importance to grid operators as the growing proliferation of distributed renewable energy resources, mainly solar generation, is causing major technical challenges in supply-load balance. The proposed microgrid optimal scheduling model coordinates the microgrid net load with the aggregated consumers/prosumers net load in its connected distribution feeder to capture both inter-hour and intra-hour net load variations. In particular, net load variations for three various time resolutions are considered, including hourly ramping, 10-min based load following, and 1-min based frequency regulation. Numerical simulations on a test distribution feeder with one microgrid and several consumers/prosumers indicate the effectiveness of the proposed model and the viability of the microgrid application in supporting grid operation.

Keywords: Ancillary services; Frequency regulation; Load following; Microgrid; Optimal scheduling; Renewable energy (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-12-16
Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:555-563