Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets
R. Manimaran
Energy, 2017, vol. 123, issue C, 564-578
Abstract:
In the present study, three dimensional computational fluid dynamic simulations are carried out to understand the energy separation in the counter-flow vortex tube. The objective of the work is to understand the flow features that affect the energy separation between the core and peripheral flow layers inside the vortex tube. Trapezoidal shaped inlets of varying numbers from one to six are compared and analyzed, while the total inlet mass flow rate and other geometrical parameters are held constant with air as a working fluid. From the results, highest temperature separation is observed with single inlet as observed in the literature. Further, the vorticity and turbulent kinetic energy at the dividing line between core and periphery decrease with the increase in number of inlets. To understand the same, streamlines are visualized. Analysis reveals that higher core flow layer diameter, lower mean pitch distance and longer residence time are the main factors affecting energy separation. It is also found that secondary circulation vortices are prominent with the single inlet. The size of these vortices regardless of the number plays a key role in energy separation.
Keywords: Counter-flow vortex tube; Number of inlets; Flow field; Temperature separation; Computational fluid dynamics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217301998
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:123:y:2017:i:c:p:564-578
DOI: 10.1016/j.energy.2017.02.025
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().