Modelling of organic Rankine cycle power systems in off-design conditions: An experimentally-validated comparative study
Rémi Dickes,
Olivier Dumont,
Rémi Daccord,
Sylvain Quoilin and
Vincent Lemort
Energy, 2017, vol. 123, issue C, 710-727
Abstract:
Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the off-design simulation of ORC-based power systems. To this end, three types of modelling paradigms (namely a constant-efficiency method, a polynomial-based method and a semi-empirical method) are compared both in terms of their fitting and extrapolation capabilities. Post-processed measurements gathered on two experimental ORC facilities are used as reference for the models calibration and evaluation. The study is first applied at a component level (i.e. each component is analysed individually) and then extended to the characterization of the entire organic Rankine cycle power systems. Benefits and limitations of each modelling method are discussed. The results show that semi-empirical models are the most reliable for simulating the off-design working conditions of ORC systems, while constant-efficiency and polynomial-based models are both demonstrating lack of accuracy and/or robustness.
Keywords: Organic Rankine cycle; Modelling; Off-design; Experimental data; Simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217301378
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:123:y:2017:i:c:p:710-727
DOI: 10.1016/j.energy.2017.01.130
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().