EconPapers    
Economics at your fingertips  
 

Validation of kinematic wind turbine wake models in complex terrain using actual windfarm production data

Fredrik Seim, Arne R. Gravdahl and Muyiwa S. Adaramola

Energy, 2017, vol. 123, issue C, 742-753

Abstract: Measurements from a wind farm in northern Norway have been used in an attempt to validate three kinematic wake models, which are often preferred due to their efficiency in terms of calculation time. Assisted by the commercial CFD-based WindSim software, the accuracy of the Jensen-, Larsen- and Ishihara model are tested in eight single-wake cases with regard to several key aspects. Due to the complex terrain at the site, a range of issues complicated the validation procedure. The Larsen model correlated well with the measured data regarding the normalized power deficit, while both the Jensen- and Ishihara model clearly overestimated the power deficit. At the wake centerline, the Larsen model was by far the most accurate, with a mean absolute error of 7%. The Jensen- and Ishihara model had a mean absolute error of 21% and 34% respectively. Both the Jensen- and Ishihara model agreed well with the observed wake width. The Larsen model widely overestimated the wake width in all cases, but with an almost constant offset. For the energy loss in the wake, the Larsen model performed best for the three investigated wake cases with a mean absolute error of 29%, although all the three wake models showed a varying performance with a tendency to underestimate the energy loss.

Keywords: Kinematic wake models; Complex terrain; Annual energy production; WindSim software (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217301470
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:123:y:2017:i:c:p:742-753

DOI: 10.1016/j.energy.2017.01.140

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:742-753