Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand response
Zhongfu Tan,
Guan Wang,
Liwei Ju,
Qingkun Tan and
Wenhai Yang
Energy, 2017, vol. 124, issue C, 198-213
Abstract:
Conditional value at risk (CVaR) and confidence degree theory are introduced to build scheduling model for VPP connecting with wind power plant (WPP), photovoltaic generators (PV), convention gas turbine (CGT), energy storage systems (ESSs) and incentive-based demand response (IBDR). Latin hypercube sampling method and Kantorovich distance are introduced to construct uncertainties analysis method. A risk aversion scheduling model is proposed with minimum CVaR objective considering maximum operation revenue. The IEEE30 bus system is used as simulation system. Results show: (1) Price-based demand response could realize peak load shifting, ESSs and IBDR could increase operation revenue. (2) Threshold α reflects risk attitude of decision maker, which has strong risk tolerant to gain the excess income with low α. (3) In peak period, decision maker would reduce WPP and PV for avoiding power shortage loss. Otherwise, WPP and PV would be called in priority since system reserve capacity is sufficient. (4) When 0.85≤β < 0.95, the decreasing slope of CVaR value is big, decision maker is sensitive on risk. When β≥0.95, VPP scheduling scheme reach the most conservative, net revenue and CVaR value are ¥8995.34 and ¥18834. Therefore, the proposed model could describe VPP risk and provide decision support tool for decision maker.
Keywords: CVaR method; Virtual power plant; Demand response; Risk aversion; Dynamical scheduling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217302372
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:124:y:2017:i:c:p:198-213
DOI: 10.1016/j.energy.2017.02.063
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().