EconPapers    
Economics at your fingertips  
 

A probabilistic approach to the computation of the levelized cost of electricity

Thomas Geissmann

Energy, 2017, vol. 124, issue C, 372-381

Abstract: This paper sets forth a novel approach to calculate the levelized cost of electricity (LCOE) using a probabilistic model that accounts for endogenous input parameters. The approach is applied to the example of a nuclear and gas power project. Monte Carlo simulation results show that a correlation between input parameters has a significant effect on the model outcome. By controlling for endogeneity, a statistically significant difference in the mean LCOE estimate and a change in the order of input leverages is observed. Moreover, the paper discusses the role of discounting options and external costs in detail. In contrast to the gas power project, the economic viability of the nuclear project is considerably weaker.

Keywords: Levelized costs of electricity; Nuclear and gas power; Monte Carlo simulation; Investment analysis; Uncertainty (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217302529
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:124:y:2017:i:c:p:372-381

DOI: 10.1016/j.energy.2017.02.078

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:124:y:2017:i:c:p:372-381