Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification
Lasse R. Clausen
Energy, 2017, vol. 125, issue C, 327-336
Abstract:
A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed by thermodynamic modelling and the analysis shows that the system can handle mechanically dried biomasses with a water content of 70 wt% and an ash content of up to 50 wt% (dry basis). A high tolerable ash content is an advantage because very wet biomasses, such as sewage sludge and manure, have a high ash content. The analysis shows that the total efficiency of the novel system is 69–70% depending on the biomass ash content, while the biomass to SNG energy ratio is 165%, which is near the theoretical maximum because electrolytic hydrogen is supplied to the synthesis gas. It is proposed to combine the novel system with an anaerobic digester for conversion of biomasses with high nitrogen content, such as sewage sludge. The organic nitrogen in the sewage sludge will be mineralized in the digester instead of ending up as N2 in the SNG product.
Keywords: Steam drying; Gasification; Electrolysis; SOEC; Synthetic natural gas; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303158
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:125:y:2017:i:c:p:327-336
DOI: 10.1016/j.energy.2017.02.132
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().