A novel screening framework for waste heat utilization technologies
Gbemi Oluleye,
Ning Jiang,
Robin Smith and
Megan Jobson
Energy, 2017, vol. 125, issue C, 367-381
Abstract:
Waste heat exploitation improves the energy efficiency of process sites, ensuring lower costs and lower CO2 emissions. Technologies such as organic Rankine cycles, absorption chillers, mechanical heat pumps, absorption heat transformers and absorption heat pumps exist to utilize waste heat. Though these technologies make waste heat re-use technically feasible, selection of technologies based on different heat source temperatures still needs to be addressed. In this work, a novel screening approach is proposed to compare technologies considering the waste heat source quality. A methodology is also presented to select technologies for a process site based on the screening results. Since multiple energy form interactions occur, the screening criterion considers the deviation of the actual performance from the ideal performance of technology options, taking into account irreversibilities as a result of finite temperature heat transfer. The tool is applied to screen and select technologies for waste heat sources below 265 °C. Results identify the temperature ranges where technologies have minimum exergy degradation. The framework systematically matches heat source temperatures with technology options compared to a trial and error approach. The framework was applied to an industrial case study to recover 45,660 kW of useful energy from the available waste heat.
Keywords: Waste heat utilization; Exergy degradation; Thermodynamic cycles; Comparative study (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421730302X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:125:y:2017:i:c:p:367-381
DOI: 10.1016/j.energy.2017.02.119
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().