Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol
Chao Zhang,
Chunhua Zhang,
Le Xue and
Yangyang Li
Energy, 2017, vol. 125, issue C, 439-448
Abstract:
An experimental study of n-butanol pipe injection homogeneous charge compression ignition (HCCI) in combination with n-heptane in-cylinder direct injection (DI) is conducted on a modified engine. Since n-butanol does not have a good ignition property, it is preferable to utilize a better ignition fuel (n-heptane) to avoid HCCI combustion only controlled by chemical kinetics and to improve the ignition stability and combustion process. The effects of DI pressure, quantity, timing and intake temperature on RCCI combustion characteristics, thermal efficiency and emissions are studied. The results show that, the optimum DI pressure is 6 MPa. With the increase of DI quantity, peak in-cylinder pressure, peak pressure rise rate and peak heat release rate all increase and occur in advance, CA10 and CA50 occur earlier and combustion duration is shortened. DI timing has an obvious influence on combustion phase. It is concluded that, by adding n-heptane DI, HCCI combustion of n-butanol is improved, HC and CO emissions are reduced, and NOx emission is kept at a very-low level. A smaller cyclic variation is detected and more stable operation is achieved. To some extent, the combustion phase may be controlled, the indicated thermal efficiency is improved, and the operation range has been extended.
Keywords: Reactivity controlled compression ignition (RCCI); n-heptane direct injection; n-butanol pipe injection; Combustion characteristics; Operation range (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303316
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:125:y:2017:i:c:p:439-448
DOI: 10.1016/j.energy.2017.02.148
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().