Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming
S. Hr. Aghay Kaboli,
A. Fallahpour,
J. Selvaraj and
N.A. Rahim
Energy, 2017, vol. 126, issue C, 144-164
Abstract:
This study formulates the effects of two different historical data types on electrical energy consumption of ASEAN-5 counties. On this basis, optimized GEP (gene expression programming) is applied to precisely formulate the relationships between historical data and electricity consumption. The optimized GEP is a more recent extension of GEP with high probability of finding closed-form solution in mathematical modeling without prior knowledge about the nature of the relationships between variables. This merit is provided by balancing the exploration of solution structure and exploitation of its appropriate weighting factors through use of a robust and efficient optimization algorithm in learning process of GEP. To assess the applicability and accuracy of the proposed method, its estimates are compared with those obtained from ANN (artificial neural network), SVR (support vector regression), ANFIS (adaptive neuro-fuzzy inference system), rule-based data mining algorithm, GEP, linear and quadratic models optimized by PSO (particle swarm optimization), CSA (cuckoo search algorithm) and BSA (backtracking search algorithm). The simulation results are validated by actual data sets observed from 1971 until 2011. The results confirm the higher accuracy of the proposed method as compared with other artificial intelligence based models. Future estimations of electrical energy consumption in ASEAN-5 countries are projected up to 2030 according to rolling-based forecasting procedure.
Keywords: Electrical energy consumption; Forecasting; Gene expression programming; Optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (39)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303675
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:126:y:2017:i:c:p:144-164
DOI: 10.1016/j.energy.2017.03.009
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().