Investigation on performance of a spark-ignition engine fueled with dimethyl ether and gasoline mixtures under idle and stoichiometric conditions
Changwei Ji,
Lei Shi,
Shuofeng Wang,
Xiaoyu Cong,
Teng Su and
Menghui Yu
Energy, 2017, vol. 126, issue C, 335-342
Abstract:
This study investigated effects of dimethyl ether addition on the gasoline engine combustion and emissions performance under idle and stoichiometric conditions. The engine was first modified to be fueled with gasoline and dimethyl ether simultaneously. The experimental results showed that, with the increase of dimethyl ether energy fraction in the total fuel, the total fuel energy flow rate was decreased, and the flame development and propagation periods were shortened. The cycle-to-cycle variation was reduced and the degree of constant volume combustion was increased after the dimethyl ether addition. The dimethyl ether blending was beneficial for reducing hydrocarbon and nitrogen oxide emissions from 1951 and 95 ppm of the original engine to 552 and 34 ppm of pure dimethyl ether, respectively. Meanwhile, with the increase of dimethyl ether addition level, the peak cylinder pressure and carbon monoxide emission were decreased at first, whereas increased when the dimethyl ether energy fraction exceeded 49%. Furthermore, heat release rate during the low temperature reaction was enhanced with the increase of dimethyl ether addition level. The maximum heat release rate was heightened and its relevant crank angle was advanced during the high temperature reaction period after the dimethyl ether enrichment.
Keywords: Combustion; Emissions; Gasoline; Dimethyl ether; Idle (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217304115
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:126:y:2017:i:c:p:335-342
DOI: 10.1016/j.energy.2017.03.045
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().