Burning velocities of DME(dimethyl ether)-air premixed flames at elevated temperatures
Robin John Varghese,
V. Ratna Kishore,
M. Akram,
Y. Yoon and
Sudarshan Kumar
Energy, 2017, vol. 126, issue C, 34-41
Abstract:
This paper reports the measurement of laminar burning velocities of DME (dimethyl ether)-air mixtures at higher mixture temperatures using planar flames stabilized in a controlled temperature mesoscale diverging channel. The reliability of this technique for flame speed measurement at high mixture temperatures has been established through various numerical studies using detailed 3-D computational model for DME-air mixtures. The distribution of fuel-air mass flux, reaction zone, and flame shape indicate that a planar flame is indeed formed in both transverse and depth directions of the channel. The stabilized flame is independent of any stretch effects except mild hydrodynamic strain due to channel divergence (30-50 s−1), and measured values of laminar burning velocities are within ±5% of the actual value. The experiments were carried out at various equivalence ratios (ϕ = 0.7–1.4) and elevated mixture temperatures (350–640 K). The burning velocities and temperature exponents were determined using the planar flames stabilized at different mixture inlet velocities and temperatures. Slightly rich mixtures (ϕ = 1.1) point to the maximum burning velocity, in good agreement with recent literature at ambient conditions. Temperature exponents for different equivalence ratios increase to both sides of ϕ = 1.1. Numerically calculated laminar burning velocities with different chemical kinetic schemes compared well with the measured burning velocities at higher mixture temperatures.
Keywords: Laminar burning velocity; Planar flames; Diverging channel; Dimethyl ether flames (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303626
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:126:y:2017:i:c:p:34-41
DOI: 10.1016/j.energy.2017.03.004
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().