EconPapers    
Economics at your fingertips  
 

System scaling approach and thermoeconomic analysis of a pressure retarded osmosis system for power production with hypersaline draw solution: A Great Salt Lake case study

Thomas T.D. Tran, Keunhan Park and Amanda D. Smith

Energy, 2017, vol. 126, issue C, 97-111

Abstract: Osmotic power with pressure retarded osmosis (PRO) is an emerging renewable energy option for locations where fresh water and salt water mix. Energy can be recovered from the salinity gradient between the solutions. This study provides a comprehensive feasibility analysis for a PRO power plant in a hypersaline environment. A sensitivity analysis investigates the effects of key technical and financial parameters on energy and economic performances. A case study is developed for the Great Salt Lake in Utah, USA (which has an average 24% salt concentration). A 25 MW PRO power plant is investigated to analyze the necessary components and their performances. With currently available technologies, the power plant would require 1.54 m3/s (24,410 GPM) fresh water flow rate and 3.08 m3/s (48,820 GPM) salt water flow rate. The net annual energy production is projected to be 154,249 MWh, with capital cost of $238.0 million, and operations and maintenance cost of $35.5 million per year. The levelized cost of electricity (LCOE) would be $0.2025/kWh, but further design improvements would reduce the LCOE to $0.1034/kWh. The high salinity of the Great Salt Lake is a critical factor toward making the osmotic power plant economically feasible.

Keywords: Pressure retarded osmosis; Power generation; Renewable energy; Hydroelectric; Levelized cost (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303602
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:126:y:2017:i:c:p:97-111

DOI: 10.1016/j.energy.2017.03.002

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:97-111