EconPapers    
Economics at your fingertips  
 

Numerical multiphase modeling of CO2 absorption and desorption in microalgal raceway ponds to improve their carbonation efficiency

Haider Ali and Cheol Woo Park

Energy, 2017, vol. 127, issue C, 358-371

Abstract: The carbonation efficiency in raceway ponds was improved by modeling CO2 desorption and absorption between the pond and the atmosphere. The Euler–Euler two-fluid method was used to model gas–liquid flow mixing with mass transfer in the raceway pond. The average gas hold-up, mass transfer coefficient, dissolved CO2 concentration, CO2 desorption rate to the atmosphere, and CO2 absorption rate from the atmosphere were investigated using the effects of sump configuration, pond geometry, and gas–liquid hydrodynamic properties. The carbonation efficiency of the entire raceway pond was investigated by considering the effects of sump geometrical design, aspect ratio, water depth, paddle wheel rotational speed, gas bubble size, and gas mass flux. The CO2 desorption and absorption rates were estimated using novel equations from the literature. Results showed that the CO2 desorption rate was low in wide and shallow raceway ponds. The gas–liquid mass transfer increased in ponds with a low aspect ratio and small water depths. The high rotational speeds of the paddle wheel enhanced gas dissolution, and large amounts of CO2 were desorbed to the atmosphere. Moreover, sump configuration as well as geometrical and gas–liquid hydrodynamic properties significantly affected the carbonation efficiency and algal productivity.

Keywords: Raceway pond; Carbonation efficiency; Carbonation sump; Two-phase flow; Gas desorption (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217305364
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:127:y:2017:i:c:p:358-371

DOI: 10.1016/j.energy.2017.03.143

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:358-371