EconPapers    
Economics at your fingertips  
 

Effect of power level on the microwave pyrolysis of tire powder

Zhanlong Song, Yaqing Yang, Jing Sun, Xiqiang Zhao, Wenlong Wang, Yanpeng Mao and Chunyuan Ma

Energy, 2017, vol. 127, issue C, 571-580

Abstract: The pyrolytic performance of tire powder treated under different specific microwave powers (SMP), powers per 1 g sample, (9, 15, and 24 W/g) was investigated. The experimental results show that the pyrolysis level of tire powder was enhanced with increasing SMP. The maximum yields of liquid product (45%) and gas product (18.5%) were obtained at 15 and 24 W/g, respectively. In addition, the conversion rates of main organic elements transferred to three-phase products were calculated. All of the evolved gases were collected in successive gasbags, and 80% of the volumes were low-molecular-weight gases like H2, CH4 and C2H4; the fraction of gases generated increased with increasing SMP. The liquid products contained a large amount of aromatic hydrocarbons, and more limonene (nearly 10%) was produced in microwave pyrolysis than in conventional pyrolysis of tires. The proximate and ultimate analyses of the solid product showed a slight difference in composition as a function of SMP. Furthermore, there may be a competitive reaction between the sulfur release to the volatiles and sulfur fixation, forming ZnS; the amount of ZnS varied with SMP. The energy recovery was examined, which provides a useful measure of the energy efficiency of microwave pyrolysis process.

Keywords: Tire powder; Microwave pyrolysis; Specific microwave power; Product composition (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217305431
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:127:y:2017:i:c:p:571-580

DOI: 10.1016/j.energy.2017.03.150

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:571-580