Measurement of power loss during electric vehicle charging and discharging
Elpiniki Apostolaki-Iosifidou,
Paul Codani and
Willett Kempton
Energy, 2017, vol. 127, issue C, 730-742
Abstract:
When charging or discharging electric vehicles, power losses occur in the vehicle and the building systems supplying the vehicle. A new use case for electric vehicles, grid services, has recently begun commercial operation. Vehicles capable of such application, called Grid-Integrated Vehicles, may have use cases with charging and discharging summing up to much more energy transfer than the charging only use case, so measuring and reducing electrical losses is even more important. In this study, the authors experimentally measure and analyze the power losses of a Grid-Integrated Vehicle system, via detailed measurement of the building circuits, power feed components, and of sample electric vehicle components. Under the conditions studied, measured total one-way losses vary from 12% to 36%, so understanding loss factors is important to efficient design and use. Predominant losses occur in the power electronics used for AC-DC conversion. The electronics efficiency is lowest at low power transfer and low state-of-charge, and is lower during discharging than charging. Based on these findings, two engineering design approaches are proposed. First, optimal sizing of charging stations is analyzed. Second, a dispatch algorithm for grid services operating at highest efficiency is developed, showing 7.0% to 9.7% less losses than the simple equal dispatch algorithm.
Keywords: Electric vehicles; Energy efficiency; Power losses; Grid-integrated vehicles; Vehicle-to-grid; Dispatch algorithm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (56)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303730
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:127:y:2017:i:c:p:730-742
DOI: 10.1016/j.energy.2017.03.015
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().