EconPapers    
Economics at your fingertips  
 

Performance analysis of a novel low CO2-emission solar hybrid combined cycle power system

Guoqiang Zhang, Yuanyuan Li and Na Zhang

Energy, 2017, vol. 128, issue C, 152-162

Abstract: This paper is a proposal and analysis of a novel low-CO2 emission solar hybrid combined cycle power system, which is based on solar-driven methane reforming. Nearly full methane conversion is achieved at a mild temperature (∼550 °C) using a methane reforming reactor integrated with a hydrogen separation membrane, enabling the solar thermal energy collected at middle temperature to be applied as the reaction heat in methane reforming, thereby converting the solar heat to chemical energy of the produced syngas. The membrane reactor also offers the advantage of continuously withdrawing hydrogen from the reaction zone, which is then burned at high temperature for power generation in the proposed advanced combined cycle system. The CO2-enriched gas concentrated at the end of the reaction zone is processed through pre-combustion decarbonization. It is shown that system thermal efficiency of 51.6% can be obtained, which is 2.2%-points higher than that of a referenced gas-steam combined cycle system with post-combustion decarbonization (CC-Post) at an equal CO2 removal ratio and no solar assistance. Fossil fuel saving ratio of 31.2% is achieved with a solar thermal share of 28.2%. Exergy analysis indicates that the main contributors for efficiency improvements are the reduced exergy destructions in the combustion and CO2 separation processes. The hybrid system has an exergy efficiency of 58% with 91% CO2 capture, which is 10%-points higher than that of a comparable CC-Post system. A preliminary economic analysis predicts that levelized electricity cost and payback period for the system are found to be 0.062 $/kWh and 10 years, respectively, and cost of CO2 avoided is 81 $/(ton CO2), which is 42.5% lower than that for a CC-Post system. The proposed system hybridization approach simultaneously achieves the dual-purpose of high-efficiency solar heat conversion and low-energy penalty CO2 capture.

Keywords: Hybrid power system; Solar thermal energy; Membrane reformer; CO2 capture; Exergy and economic analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217305534
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:128:y:2017:i:c:p:152-162

DOI: 10.1016/j.energy.2017.03.169

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:128:y:2017:i:c:p:152-162