Optimal design of thermoelectric cooling system integrated heat pipes for electric devices
Di Liu,
Yang Cai and
Fu-Yun Zhao
Energy, 2017, vol. 128, issue C, 403-413
Abstract:
A general theoretical module for optimization of a thermoelectric cooling system is presented based on the method of effectiveness-number of transfer units (ε−NTU). This paper mainly focused on the heat exchanger configuration under the temperature-controller module in the thermoelectric cooling system. The effects of thermal extender block, thermal conductance, the ratio of total heat transfer allocation are conducted for improving the cooling capacity and reducing the chip temperature of electric devices. In addition, temperature-difference of thermoelectric cooler and performance is considered as the reference for optimum design under various conditions. Analysis results show the thermal extender block is significant characteristic in optimum design for thermoelectric cooling system. The cooling capacity and coefficient of performance can effective enhanced by selecting appropriate scale of extender block. Furthermore, the optimum ratio of heat transfer area allocation can be gained based on the various extender block. The results indicate thermoelectric cooling system integrated heat pipes has a great prospects in electronic devices application and can be analyzed by ε−NTU. Finally, The optimal results are proposed as references for designers and users.
Keywords: Thermoelectric cooling system; ε-NTU; Temperature-controller; Extender block; Optimum design (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217305121
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:128:y:2017:i:c:p:403-413
DOI: 10.1016/j.energy.2017.03.120
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().