Development of a building integrated solar photovoltaic/thermal hybrid drying system
Ya Brigitte Assoa,
François Sauzedde,
Benjamin Boillot and
Simon Boddaert
Energy, 2017, vol. 128, issue C, 755-767
Abstract:
This work presents a feedback of the main experimental studies performed on a solar PV/T hybrid air collector, from optimization to demonstration. Indoor experimental parametric studies permitted to optimize the system basic configuration consisting in a PV laminate inserted into a metal absorber and comprising an insulated air gap at the underside. The main results showed that the modification of the system configuration leads heat rise in PV laminate and thus to the decrease of its electrical performance. The main solution proposed was the addition of stiffeners at the absorber backside in order to optimize its heat transfer surface with the PV laminate. The optimized prototype was, then, integrated into a roof fodder drying installation in Savoy. First thermal, electrical and aeraulic measurements showed that wind velocity has an important effect on air velocities in the air gap, even in drying periods. Considering the existing air gap and indoor tests results, the system daily thermal efficiency up to 27.7%, the PV field electrical efficiency up to 13% and the maximum air preheating of 7.8 °C indicated that the PV/T system is suitable for fodder drying application. As further studies, technical solutions will be proposed in order to optimize the PV installation.
Keywords: Building integrated PV (BIPV); Photovoltaic/Thermal; Experimentation; Solar drying; Demonstration (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421730628X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:128:y:2017:i:c:p:755-767
DOI: 10.1016/j.energy.2017.04.062
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().