EconPapers    
Economics at your fingertips  
 

Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage

Michael Angerer, Steffen Kahlert and Hartmut Spliethoff

Energy, 2017, vol. 130, issue C, 246-257

Abstract: In this paper a novel buffer storage for the thermal decoupling of gas turbine (GT) and heat recovery steam generator (HRSG) during startups and shutdowns is presented to the scientific public. The storage consists of a matrix of metal plates, placed in the flue gas channel between GT and HRSG, which is heated up during startup and cooled down during shutdown thus reducing the thermal gradients in the actual HRSG. The limitation to fast startups in combined cycle gas turbine (CCGT) plants is usually fatigue induced damage in critical components in the HRSG. To investigate the influence of the storage on the fatigue damage, a transient modeling strategy of both, storage and HRSG, is developed. It is found, that in the investigated plant such a storage is capable of reducing the cycling fatigue damage in the most critical part of the HRSG by up to 90% and therefore enables to act the GT as flexible as if no HRSG was connected to it.

Keywords: Heat recovery steam generator; Gas turbine; Combined cycle; Transient simulation; Fatigue damage; Start up improvement; Heat storage (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217306709
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:130:y:2017:i:c:p:246-257

DOI: 10.1016/j.energy.2017.04.104

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:246-257