EconPapers    
Economics at your fingertips  
 

Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies

Gaetano Contento, Bruno Lorenzi, Antonella Rizzo and Dario Narducci

Energy, 2017, vol. 131, issue C, 230-238

Abstract: The performances of two hybrid thermoelectric photovoltaic systems are compared. In the first instance, a photovoltaic (PV) device and a thermoelectric generator (TEG) are optically coupled using a vacuum–sealed compound parabolic concentrator (CPC). As an alternative, PV and TEG devices are thermally coupled putting them directly in contact to each other. Single–junction a–Si and heterojunction Cu2ZnSnS4 (CZTS) have been considered as PV systems. The two systems are studied by varying the heat transfer coefficient of the cooling system between the TEG cold side and the ambient, the TEG device fill factor, and the optical concentration. Hybridization, in both configurations, always enhances the efficiencies, up to ≈ 57% for single-junction a-Si and up to ≈ 35% for the heterojunction CZTS. It will be shown that while direct thermal contact enables larger efficiencies, optical coupling grants lower temperatures at the PV side, enhancing reliability and lifetime. Further advantages and limitations of both configurations will be discussed.

Keywords: Photovoltaics; Thermoelectricity; Solar energy (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217307843
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:131:y:2017:i:c:p:230-238

DOI: 10.1016/j.energy.2017.05.028

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:131:y:2017:i:c:p:230-238