EconPapers    
Economics at your fingertips  
 

Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends

Guangwei Wang, Jianliang Zhang, Guohua Zhang, Xiaojun Ning, Xinyu Li, Zhengjian Liu and Jian Guo

Energy, 2017, vol. 131, issue C, 27-40

Abstract: The non-isothermal thermogravimetric method was applied to petroleum coke (PC), corncob char (CC) and their blends with the different mass ratios under CO2 atmosphere. The results show that CC with highly developed pore structure, high content of alkali metals and low degree of order had more reactivity than that of PC. The gasification reactivity of PC could be effectively improved by blending with CC. Meanwhile, there was obviously synergetic effect for the co-gasification of PC and CC. With the increase of mass ratio of CC, the synergetic effect first increased and then decreased. The synergetic effect was most obvious when CC mass ratio was 20%. Three nth-order representative gas-solid models: volume reaction model (VM), random pore model (RPM) and unreaction core model (URCM) were used to interpret the carbon conversion data. The overall fitting result of the RPM was slightly better than that of the VM and URCM. Furthermore, the synergetic effect between PC and CC was observed from the kinetics data calculated by RPM. The activation energy determined for PC and CC gasification was 203.2 kJ/mol and 243.3 kJ/mol, respectively, whereas, the lowest activation energy for their blends was 197.8 kJ/mol when CC ratio was 20%.

Keywords: Thermogravimetric analysis; Petroleum coke; Biomass char; Co-gasification; Kinetic models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217307806
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:131:y:2017:i:c:p:27-40

DOI: 10.1016/j.energy.2017.05.023

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:131:y:2017:i:c:p:27-40