EconPapers    
Economics at your fingertips  
 

Transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC

Qiang Zhang, Menghan Li, Guoxiang Li, Sidong Shao and Peixin Li

Energy, 2017, vol. 132, issue C, 225-237

Abstract: The recent issued emission regulations have more stringent standards for the transient emissions of natural gas engines. When equipped with cooled exhaust gas recirculation (EGR) and three way catalyst (TWC), natural gas engines operating at stoichiometric conditions are capable of achieving extremely low transient emissions. In this paper, the transient emission characteristics of a heavy-duty natural gas engine at stoichiometric operation with EGR and TWC are experimentally studied based on the world harmonized transient cycle (WHTC). The results show that both the raw carbon monoxide (CO) and total hydrocarbon (THC) emissions are higher in the hot start test while the raw NOx emissions are higher in the cold start test. When measurements are conducted after the TWC, all these emissions are higher in the cold start test. Among all the sub-cycles of WHTC, the urban sub-cycle plays the most important role for all three emissions in both cold start and hot start conditions except the after three way catalyst (ATWC) CO emissions in the cold start test, where the motorway sub-cycle takes up the highest percentage. In summary, CO, nitrogen oxide (NOx) as well as non-methane hydrocarbon (NMHC) emissions can meet the requirements of Euro VI emission standards, whereas CH4 emissions are higher than the corresponding standard, suggesting that improvements in the performance of the catalyst are essential.

Keywords: Natural gas engines; Stoichiometric; EGR; TWC; Emissions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421730796X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:132:y:2017:i:c:p:225-237

DOI: 10.1016/j.energy.2017.05.039

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:132:y:2017:i:c:p:225-237