EconPapers    
Economics at your fingertips  
 

Thermodynamic mechanism for hybridization of moderate-temperature solar heat with conventional fossil-fired power plant

Yawen Zhao, Hui Hong, Hongguang Jin and Peiwen Li

Energy, 2017, vol. 133, issue C, 832-842

Abstract: The objective of this study is to achieve a higher solar-to-electricity conversion efficiency through solar-fossil hybrid thermal power systems compared to a solar-only power plant. The study reveals the thermodynamic details for the improved solar-to-electricity efficiency in a solar hybrid power plant. A correlation was established to describe the main factors influencing the thermodynamic performances, including higher collector efficiency, higher turbine efficiency and upgraded energy level of the moderate-temperature solar heat. This proposed mechanism can be applied to effectively integrate solar and fossil-fired energy in a power system. The studies took typical fossil-fired power plants to hybridize with solar heat in three approaches: preheating the feed water before it entering the boiler for coal-fired system; heating for generation of saturate steam or superheated steam in gas-fired combined cycle. The results indicate that the moderate-temperature solar and fossil hybridization technology can provide a promising direction for efficient utilization of low-grade solar heat.

Keywords: Solar-fossil hybridization; Moderate-temperature solar heat; Solar-to-electricity efficiency; Upgrade of energy level (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217308253
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:133:y:2017:i:c:p:832-842

DOI: 10.1016/j.energy.2017.05.069

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:832-842