EconPapers    
Economics at your fingertips  
 

Estimates of GHG emissions by hydroelectric reservoirs: The Brazilian case

Marco Aurélio dos Santos, Jorge Machado Damázio, Josiclea Pereira Rogério, Marcelo Andrade Amorim, Alexandre Mollica Medeiros, Juliano Lucas Souza Abreu, Maria Elvira Pineiro Maceira, Albert Cordeiro Melo and Luiz Pinguelli Rosa

Energy, 2017, vol. 133, issue C, 99-107

Abstract: This article reports and discusses the application of an analysis of reservoir greenhouse gas (GHG) emission using the net emission approach (difference between post-impoundment and pre-impoundment emissions) to assessments of GHG emissions from hydropower reservoirs compared with GHG emissions from thermal plants producing electrical energy. Reservoirs were chosen from a representative set of different Brazilian biomes and climatic regimes. A field campaign program was performed between 2011 and 2013 to estimate net GHGs emissions from 8 Brazilian representative hydropower plants. Four field campaigns to each hydropower plant were scheduled within two-month intervals to measure CH4, CO2 and N2O diffusive fluxes on air-water interfaces (reservoir surface area and downstream river, CH4 and CO2 ebullitive fluxes on the air-water interfaces of the reservoir and degassing rates at powerhouse turbines). Permanent carbon burial rates were also measured in the reservoirs. Statistical analyses of the data were representative of post-impoundment annual values for GHG emissions for each pathway and for permanent carbon burial rates. Values for pre-impoundment representative annual GHG emission were calculated taking into account previous land cover mapping data from the period of the creation of the reservoir, and reference GHG flux values established by the literature for each land cover class. To compare with thermopower generation, annual values obtained were expressed as GHG intensity in g of CO2eq.kWh−1 considering a Global Warming Potential value for 100 years; the factor 44/12 was considered as the permanent carbon burial rate necessary to transform carbon into carbon dioxide; and production of plant firm energy was also considered. Annual net GHG emissions estimates were expressed as GHG intensity in g of CO2eq kWh−1.

Keywords: Greenhouse gas; Hydropower reservoirs; Net emissions; Methane; Carbon dioxide (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217308393
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:133:y:2017:i:c:p:99-107

DOI: 10.1016/j.energy.2017.05.082

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:99-107