EconPapers    
Economics at your fingertips  
 

A new optimal power flow approach for wind energy integrated power systems

Shima Rahmani and Nima Amjady

Energy, 2017, vol. 134, issue C, 349-359

Abstract: Penetration of wind generation into power systems in recent years has greatly affected optimal power flow (OPF) because of the uncertain behavior of this new energy resource. In this research work, at first, a novel scenario generation approach is proposed to model wind power (WP) uncertainty. The proposed scenario generation approach includes construction of probability density function (PDF) pertaining to WP forecast error, segmentation of the PDF by an efficient clustering approach to obtain both the optimal number and the optimal arrangement of the clusters, and the generation of WP scenarios using the optimized clusters through roulette wheel mechanism. Secondly, this paper presents a new OPF framework based on DC network modeling for wind generation integrated power systems. Thirdly, a new out-of-sample analysis is presented to evaluate the long-run performance of the proposed OPF approach encountering various realizations of uncertain WPs. Finally, the performance of the proposed method for solving WP-integrated OPF problem is extensively illustrated on the IEEE 30-bus and the IEEE 118-bus test systems and compared with the performance of the deterministic method and the Weibull PDF method. These comparisons illustrate better performance of the proposed method, while it has reasonable computation times.

Keywords: Wind power (WP); Optimal power flow (OPF); Scenario; Probability density function (PDF) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217310356
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:134:y:2017:i:c:p:349-359

DOI: 10.1016/j.energy.2017.06.046

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:349-359