EconPapers    
Economics at your fingertips  
 

Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles

Dereje S. Ayou, Joan Carles Bruno and Alberto Coronas

Energy, 2017, vol. 135, issue C, 327-341

Abstract: This paper presents and discusses the performance improvement and operational flexibility of a Single-Stage Combined Absorption Power and Refrigeration Cycle (SSAPRC) with an integrated compression booster. The compression booster is placed between the absorber and the evaporator. A mechanical compressor and later a thermal compressor (vapor-ejector) are used as a compression booster. This added feature is very interesting for this type of cycle, because they generate power that could be used in the cycle itself to produce the compression needed to enhance the cycle’s performance. The energetic and exergetic performance of these new modified combined absorption cycles have been analyzed for typical thermal boundary conditions and design parameters. The integration of a mechanical compressor or a vapor ejector reduces the required driving temperature of the cycle, and when a certain split ratio is exceeded the system can work in dual-output mode producing power and cooling. The use of a vapor ejector further improved the net power output of the system. The proposed cycle configurations have an outstanding adaptability and flexibility to respond to the variation of heat source and heat rejection temperatures by adjusting the compression ratio. These cycles are therefore excellent candidates to provide simultaneous power and refrigeration, using renewable energy sources such as solar thermal energy, biomass or waste-derived fuels in polygeneration systems for remote locations or those with difficult access to the electrical grid.

Keywords: Absorption chiller; Compression; Power; Refrigeration; Dual-function (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311477
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:327-341

DOI: 10.1016/j.energy.2017.06.148

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:135:y:2017:i:c:p:327-341