Exergoeconomic optimization of a district cooling network
T. Duh Čož,
A. Kitanovski and
A. Poredoš
Energy, 2017, vol. 135, issue C, 342-351
Abstract:
A district cooling system (DCS) is superior to conventional air conditioning as it helps to reduce energy consumption and protect the environment by reducing carbon dioxide emissions. The main disadvantages of a DCS are the high initial investment costs and the long payback period. The distribution network (DN) represents a large share of initial investment costs; therefore, it has a great impact on the decision to construct a DCS. In order to ensure the competitiveness of DCS, the DN has to be optimized. In this paper the exergoeconomic concept is applied to evaluate a DN in a DCS. The objective function in the analysis is defined as the exergy based cost of the final product-cold. The exergy-based cost of cold depends on the total annual cost of a DN, the input exergy to the DN, the exergy losses and the exergy destruction. The aim of this study is to find the exergetic optimal pipe diameter and the insulation thickness, as well as the exergoeconomic optimal pipe diameter and the insulation thickness. The analysis was made for different cooling capacities and for two types of pipes: pre-insulated steel pipes, where the insulation material is polyurethane, and polyethylene pipes, without any insulation.
Keywords: Exergoeconomic analysis; District cooling network; Optimal diameter; Exergo-economic optimal insulation thickness (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:342-351
DOI: 10.1016/j.energy.2017.06.126
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().