The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model
Runrun Song,
Chenglin Chang,
Qikui Tang,
Yufei Wang,
Xiao Feng and
Mahmoud M. El-Halwagi
Energy, 2017, vol. 135, issue C, 382-393
Abstract:
It is a challenging task to solve a large-scale Inter-Plant Heat Integration (IPHI) problem, especially for simultaneous optimization for intra- and inter-plant heat integration. In the companion paper (Part I), a novel screening algorithm named Nearest and Largest Qrec-based Screening Algorithm (NLQSA) was proposed. It can be used to divide a large-scale IPHI problem into several small ones, each of which includes two or three plants, while keeping the theoretical maximum inter-plant heat recovery potential Qrecmax almost unchanged. NLQSA provides a prior solution before determination of inter-plant Heat Exchanger Network (HEN) configuration for each achieved small IPHI scheme. In this paper, a modified MINLP model with an objective of minimum Total Annual Cost (TAC) is proposed to determine the final inter-plant HEN configurations of achieved segregated IPHI schemes. With the addition of stream data extraction method and NLQSA which were proposed in Part I of this paper series, a complete three-step strategy is established in order to solve the large-scale IPHI problem. Theoretically, a large-scale IPHI problem can be solved no matter how many plants involved. A case study with seven plants is introduced to illustrate the feasibility and effectiveness of the proposed method.
Keywords: Interplant; Process integration; Pinch; Mathematical programming; Heat recovery (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:382-393
DOI: 10.1016/j.energy.2017.06.136
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().