Performance analysis on a novel compact two-stage sorption refrigerator driven by low temperature heat source
L. Jiang,
R.Z. Wang,
L.W. Wang,
J.Y. Liu,
P. Gao,
F.Q. Zhu and
A.P. Roskilly
Energy, 2017, vol. 135, issue C, 476-485
Abstract:
A novel two-stage sorption refrigeration system is established and analyzed, which is driven by heat source with the temperature lower than 100 °C. CaCl2-BaCl2-NH3 is selected as working pair whereas matrix of expanded natural graphite treated with sulfuric acid (ENG-TSA) is used for the improved heat and mass transfer performance of composite sorbent. The non-fin filling technique is adopted to decrease mass and volume of sorption reactor, which further improves system compactness. Results show that two-stage sorption refrigeration system is flexibly adapted to different heat source with temperature below 100 °C. COP and SCP of the novel system range from 0.185 to 0.22 and from 50 W kg−1 to 76 W kg−1, respectively under the condition of 70 °C–90 °C heat source temperature and 5 °C–10 °C evaporation temperature. Performance of novel two-stage sorption refrigeration system is also compared with that of previous type by using the conventional fin tube sorption reactor based on mass and volume of the whole system. It is indicated that the highest improvement of SCPsys and VCPsys for the novel system are able to reach 28.1% and 32.5%, respectively when heat source temperature is 70 °C.
Keywords: Two-stage sorption refrigeration; Composite sorbent; Sorption reactor; ENG-TSA (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421731109X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:476-485
DOI: 10.1016/j.energy.2017.06.112
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().