Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames
Harun Yilmaz,
Omer Cam and
Ilker Yilmaz
Energy, 2017, vol. 135, issue C, 585-597
Abstract:
In this study, effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air mixtures is numerically investigated. An experimentally tested micro combustor geometry is varied by establishing a cavity or a backward facing step or micro channels inside the combustor. Considering effect of combustor geometry on the amount of heat transferred through wall based on outer wall and combustor centerline temperature distributions, combustion behavior is analyzed. Emission behavior is examined by means of mixing conditions, combustion efficiency and maximum temperature value which are highly bound to geometric properties of a micro combustor. Turbulence model used in this study is Renormalization Group k-ε. For turbulence chemistry interaction, Eddy Dissipation Concept model is used. Multistep combustion reaction scheme includes 9 species and 19 steps. Numerical results obtained from this study are validated with published experimental data. Results of this study revealed that combustion in such combustors can be improved by means of quality of mixing process, residence time, combustor centerline and outer wall temperature distributions, conversion rate of input chemical energy to utilizable heat and emanated NOx levels from combustor outlet with proposed geometric variations.
Keywords: Hydrogen; Micro scale combustion; Combustor geometry (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311647
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:585-597
DOI: 10.1016/j.energy.2017.06.169
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().