Methane thermal decomposition in regenerative heat exchanger reactor: Experimental and modeling study
Tiina Keipi,
Tian Li,
Terese Løvås,
Henrik Tolvanen and
Jukka Konttinen
Energy, 2017, vol. 135, issue C, 823-832
Abstract:
In this work, thermal decomposition of methane (TDM) was experimentally studied at nominal gas temperatures of 1070 K–1450 K in a non-catalytic laboratory test reactor. The purpose was to use a simple kinetic mechanism to describe the TDM reaction, which could be applied in industrial reactor design. The experimental data was utilized to optimize global kinetic parameters describing the TDM reaction in the test reactor. For comparison, a 37-step reaction mechanism for TDM was adopted from the literature. When analyzing experimental datasets from the literature, the optimized global kinetics provided better agreement with the experimental data than the 37-step mechanism when the reactor temperature profiles were defined in detail. Since the 37-step mechanism was not able to predict the solid carbon formation well enough, the mechanism was slightly adjusted according to a reaction flow and sensitivity analysis. Additionally, it was suggested that the 37-step mechanism can be improved by optimizing the reaction mechanism by using a detailed experimental data of hydrocarbon formation in TDM achieved in an environment where the temperature profiles are fully defined.
Keywords: CCS; Hydrogen production; Kinetics; Methane cracking; Methane decomposition (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311714
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:823-832
DOI: 10.1016/j.energy.2017.06.176
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().