Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia
J. Stich,
S. Ramachandran,
T. Hamacher and
U. Stimming
Energy, 2017, vol. 135, issue C, 930-942
Abstract:
Power generation from biomass residues is an attractive option for supplying the rapidly increasing power demand of the Association of South East Asian Nations (ASEAN) in a sustainable and a cost-effective manner. In this paper, we assess the total quantity and location of biomass residues from agriculture, livestock and forestry activities in ASEAN, evaluate their technical power generation potential and estimate the cost of electricity production from these residues. A cost optimization model is developed to identify cost-effective options of power generation from biomass residues using various conversion technologies. We estimate the total available thermal energy from biomass residues in ASEAN to be approximately 1076 TWh. About 86% of the total energy potential is provided by agricultural residues, with rice, sugarcane and palm oil residues being the major contributors. We find the highest energy potentials to be located in Indonesia (407 TWh), Thailand (194 TWh) and Vietnam (153 TWh). The estimated maximum technical potential for electricity generation from biomass residues in ASEAN amounts to 360 TWh. Power generation costs vary within a wide range from less than 40 USD/MWh to more than 200 USD/MWh.
Keywords: Biomass-residues; Cost optimization; Waste-to-energy; GIS; Binary-linear programming; Cost supply curves (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421731157X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:135:y:2017:i:c:p:930-942
DOI: 10.1016/j.energy.2017.06.162
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().