EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of a gas turbine cycle combined with fuel reforming for solar thermal power generation

Mingjiang Ni, Tianfeng Yang, Gang Xiao, Dong Ni, Xin Zhou, Huanlei Liu, Umair Sultan, Jinli Chen, Zhongyang Luo and Kefa Cen

Energy, 2017, vol. 137, issue C, 20-30

Abstract: There is insufficient literature about solarized gas turbines that achieved high efficiency and solar share simultaneously. It is because the outlet temperature of a solar receiver is always much lower than a combustor and it is difficult to design a high-efficiency exhaust-heat recovery system except for a complicated Rankine cycle. A solar-assisted chemically recuperated gas turbine system is proposed and expected to achieve a good performance by combining with two-stage fuel-steam reforming. The first stage is a low-temperature reformer, recovering exhaust gas heat, and the second stage is a high-temperature one, absorbing concentrated solar radiation. Thermodynamic analyses and comparisons are conducted. This system is expected to have a competitive thermal efficiency of 47.7%, which is 10.6 percentage points higher than that of a solarized gas turbine system without reformers. Meanwhile, it has a solar share of 75.0%, which is 12.8 percentage points higher than that of a solarized gas turbine system with a low-temperature reformer. In the viewpoint of energy level, the two-stage fuel reforming upgrades low-level thermal energy of the turbine exhaust and solar receiver into high-level chemical energy, reducing exergy destruction. The relative upgrade of energy level is 38.2% for turbine exhaust and 17.4% for solar thermal energy.

Keywords: Solar thermal power; Solarized gas turbine; Fuel reforming; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217311672
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:137:y:2017:i:c:p:20-30

DOI: 10.1016/j.energy.2017.06.172

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:20-30