EconPapers    
Economics at your fingertips  
 

Comparison of different ammonia synthesis loop configurations with the aid of advanced exergy analysis

Mathias Penkuhn and George Tsatsaronis

Energy, 2017, vol. 137, issue C, 854-864

Abstract: An industrial ammonia synthesis loop is a complex interconnected system. With the synthesis reactor operated at high-pressure levels and with synthesis gas made of hydrogen and nitrogen, a highly efficient process design is necessary in order to meet the requirements in terms of cost-efficiency and environmental impact. The evaluation and optimization of different designs in the process synthesis phase are generally done by considering mass and energy balances. However, the conclusions drawn from such an analysis can be misleading and provide, if any, little useful information with respect to system improvement. In order to address these issues, an exergy analysis is used to identify the real thermodynamic inefficiencies of a system and its components. Furthermore, a subsequently conducted advanced exergy analysis provides the means to determine the structural interactions within a system and the thermodynamic improvement potential of its components. In this context, two different ammonia synthesis loop configurations are analyzed. The first concept consists of a three-staged adiabatic reactor with intermediate quench cooling, whereas the second design features a cooled reactor.

Keywords: Ammonia synthesis; Process design; Exergy analysis; Advanced exergy analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217303535
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:137:y:2017:i:c:p:854-864

DOI: 10.1016/j.energy.2017.02.175

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:854-864