Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine
Urban Žvar Baškovič,
Rok Vihar,
Tine Seljak and
Tomaž Katrašnik
Energy, 2017, vol. 137, issue C, 980-990
Abstract:
Tire pyrolysis oil (TPO) represents a promising waste-derived fuel for Diesel engines with its main deficiency being lower cetane number compared to Diesel fuel. Until now, successful utilization of the TPO in Diesel engines was possible only by increasing its cetane number, increasing compression ratio of the engine or preheating intake air or operation. This study shows the foremost results of utilizing the pure TPO in a modern turbocharged and intercooled Diesel engine without any of the aforementioned aids, which significantly facilitates its use and boosts its conversion efficiency to mechanical work. This was achieved by the tailored injection strategy that includes pilot injection, which was previously not utilized in combination with the TPO. The study reveals that with additional tailoring of the pilot injection, further optimization of thermodynamic parameters can be achieved while operating the turbocharged and intercooled Diesel engine in a wide operating range under the use of pure TPO. Discovered phenomena are supported by interpretation of interactions between the injection parameters and combustion as well as emission formation phenomena of the pure TPO.
Keywords: Tire pyrolysis oil; Diesel engines; Injection strategy; Thermodynamic parameters; Emissions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421730172X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:137:y:2017:i:c:p:980-990
DOI: 10.1016/j.energy.2017.01.156
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().