Therblig-embedded value stream mapping method for lean energy machining
Shun Jia,
Qinghe Yuan,
Jingxiang Lv,
Ying Liu,
Dawei Ren and
Zhongwei Zhang
Energy, 2017, vol. 138, issue C, 1081-1098
Abstract:
To improve energy efficiency, extensive studies have focused on the cutting parameters optimization in the machining process. Actually, non-cutting activities (NCA) occur frequently during machining and this is a promising way to save energy through optimizing NCA without changing the cutting parameters. However, it is difficult for the existing methods to accurately determine and reduce the energy wastes (EW) in NCA. To fill this gap, a novel Therblig-embedded Value Stream Mapping (TVSM) method is proposed to improve the energy transparency and clearly show and reduce the EW in NCA. The Future-State-Map (FSM) of TVSM can be built by minimizing non-cutting activities and Therbligs. By implementing the FSM, time and energy efficiencies can be improved without decreasing the machining quality, which is consistent with the goal of lean energy machining. The method is validated by a machining case study, the results show that the total energy is reduced by 7.65%, and the time efficiency of the value-added activities is improved by 8.12%, and the energy efficiency of value-added activities and Therbligs are raised by 4.95% and 1.58%, respectively. This approach can be applied to reduce the EW of NCA, to support designers to design high energy efficiency machining processes during process planning.
Keywords: Energy efficiency; Lean energy machining; Value-added; Non-valued added; Therblig-embedded value stream mapping (search for similar items in EconPapers)
JEL-codes: Q47 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421731294X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:1081-1098
DOI: 10.1016/j.energy.2017.07.120
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().