Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites
Rui-rui Cao,
Xuan Li,
Sai Chen,
Hao-ran Yuan and
Xing-xiang Zhang
Energy, 2017, vol. 138, issue C, 157-166
Abstract:
A series of a novel shape-stabilized phase change material of poly(hexadecyl acrylate)/graphene oxide (PHDA/GO) nanocomposite was fabricated by in situ free radical polymerization. The fabricated PHDA/GO nanocomposites mainly contain a poly(hexadecyl acrylate)-grated-graphene oxide (PHDA-g-GO) solid-solid phase change material (SSPCM) and a PHDA solid-liquid phase change material (SLPCM). The PHDA-g-GO SSPCM plays two roles in the PHDA/GO nanocomposites: as the supporting material and as a phase change working substance. The effects of GO loading on the crystalline properties and the phase change properties of the PHDA/GO nanocomposites were investigated. The results indicate that the grain size of the PHDA/GO nanocomposites increases with GO loading. The nanocomposites have high thermal enthalpies, and their enthalpy efficiencies are significantly higher than those of traditional shape-stabilized PCMs (TPCMs) because of the synergistic phase change effect of PHDA-g-GO and PHDA. The number of crystalline CH2 groups, including the terminal methyl, in the alkyl side chain of PHDA increases from 6.42 to 8.82. Moreover, the FTIR spectra and DSC curves of the PHDA/GO nanocomposites after thermal cycles are nearly the same as those of the original specimens, which indicate that the nanocomposites have excellent thermal reliability and reusability. This study not only provides a kind of novel shape-stabilized PCM with a high performance but also proposes a new way to solve the problem of enthalpy decline observed in TPCMs.
Keywords: Shape-stabilized PCMs; PHDA; PHDA-g-GO; Synergistic phase change; Situ free radical polymerization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217312240
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:157-166
DOI: 10.1016/j.energy.2017.07.049
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().