EconPapers    
Economics at your fingertips  
 

Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance

Zhengping Zou, Fei Shao, Yiran Li, Weihao Zhang and Albin Berglund

Energy, 2017, vol. 138, issue C, 167-184

Abstract: Tip leakage loss reduction is important for improving the turbine aerodynamic performance. In this paper, the flow field of a transonic high pressure turbine stage with a squealer tip is numerically investigated. The physical mechanism of flow structures inside the cavity that control leakage loss is presented, which is obtained by analyzing the evolution of the flow structures and its influence on the leakage flow rate and momentum at the gap outlet. The impacts of the aerodynamic conditions and geometric parameters, such as blade loading distributions in the tip region, squealer heights, and gap heights, on leakage loss reduction are also discussed. The results show that the scraping vortex generated inside the cavity is the dominant flow structure affecting turbine aerodynamic performance. An aero-labyrinth liked sealing effect is formed by the scraping vortex, which increases the energy dissipation of the leakage flow inside the gap and reduces the equivalent flow area at the gap outlet. The discharge coefficient of the squealer tip is therefore decreased, and the tip leakage loss is reduced accordingly. Variations in the blade loading distribution in the tip region and the squealer geometry change the scraping vortex characteristics, such as the size, intensity, and its position inside the cavity, resulting in a different controlling effect on leakage loss. By reasonable blade tip loading distribution and squealer tip geometry for organizing scraping vortex characteristics, the squealer tip can improve the turbine aerodynamic performance effectively.

Keywords: Turbine; Squealer tip; Leakage flow; Scraping vortex; Flow structure (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217312227
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:167-184

DOI: 10.1016/j.energy.2017.07.047

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:167-184