Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell
Farokh Mirzaei,
Mohammad Javad Parnian and
Soosan Rowshanzamir
Energy, 2017, vol. 138, issue C, 696-705
Abstract:
In this work, a highly dispersed Pt nanoparticles on multi-walled carbon nanotubes catalyst was prepared by hydrothermal method. The synthesized Pt/MWCNT nanocomposite electrocatalyst was characterized using XRD, XRF, FESEM, TEM, and EDX. In the first step, the electrochemical activity and stability of the Pt/MWCNT and Pt/C catalysts were investigated in half cell condition using cyclic voltammetry for 4000 cycles. The Pt/C catalyst showed no activity after 2000 potential cycles, conversely, the Pt/MWCNT catalyst was more active after a potential cycling of 4000 cycles. The cyclic voltammetry results of the first, 1000th, 2000th, 3000th, and 4000th cycle for synthesized Pt/MWCNTs and commercial Pt/C catalysts showed the Pt/MWCNTs was more stable. Then, the membrane electrode assemblies (MEAs) were fabricated for each catalyst. The accelerated durability test (ADT) was done for the MEAs in the high potential operation in the fuel cell test station. The morphology of the fabricated MEAs was determined by FESEM before and after the accelerated degradation test. The polarization test, impedance, and cyclic voltammetry results for MEAs before and after degradation test in fuel cell test station were reported and the results showed the synthesized Pt/MWCNT is more stable catalyst than commercial Pt/C.
Keywords: Proton exchange membrane fuel cell; Hydrothermal method; Carbon nanotube; Electrocatalyst synthesis; Durability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217312756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:696-705
DOI: 10.1016/j.energy.2017.07.098
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().